Представление графических данных
Понятие цвета и его характеристики
Понятие цвета тесно связано с тем, как человек (человеческий взгляд) воспринимает свет; можно сказать, что цвет зарождается в глазу.
Цвет – чрезвычайно сложная проблема, как для физики, так и для физиологии, т.к. он имеет как психофизиологическую, так и физическую природу. Восприятие цвета зависит от физических свойств света, т. е. электромагнитной энергии, от его взаимодействия с физическими веществами, а также от их интерпретации зрительной системой человека. Цвет предмета зависит не только от самого предмета, но также и от источника света, освещающего предмет, и от системы человеческого видения.

Для характеристики цвета используются следующие атрибуты:
  • Цветовой тон. Цветовой тон позволяет отличать один цвет от другого – например, зеленый от красного, желтого и других;
  • Яркость. Определяется энергией, интенсивностью светового излучения. Выражает количество воспринимаемого света;
  • Насыщенность или чистота тона. Выражается долей присутствия белого цвета. В идеально чистом цвете примесь белого отсутствует. Если, например, к чистому красному цвету добавить в определенной пропорции белый цвет, то получится светлый бледно-красный цвет.
Указанные три атрибута позволяют описать все цвета и оттенки. То, что атрибутов именно три, является одним из проявлений трехмерных свойств цвета.

Цвет в компьютерной графике необходим так как:
  • Он несет в себе определенную информацию об объектах. Например, летом деревья зеленые, осенью – желтые. На черно–белой фотографии определить пору года практически невозможно, если на это не указывают какие-либо другие дополнительные факты.
  • Цвет необходим также для того, чтобы различать объекты.
  • С его помощью можно вывести одни части изображения на первый план, другие же увести в фон, то есть акцентировать внимание на важном – композиционном – центре.
  • Без увеличения размера при помощи цвета можно передать некоторые детали изображения. в двумерной графике, а именно таковую мы видим на мониторе, так как он не обладает третьим измерением, именно при помощи цвета, точнее оттенков, имитируется (передается) объем.
  • Цвет используется для привлечения внимания зрителя, создания красочного и интересного изображения.
Максимальное количество цветов, которое может быть использовано в изображении данного типа, называется глубиной цвета.
Цветовое разрешение и цветовая модель
При работе с цветом используются понятия цветовое разрешение и цветовая модель. Цветовое разрешение определяет метод кодирования цветовой информации, и от него зависит сколько цветов одновременно может отображаться на экране. Для кодирования двухцветного изображения достаточно выделить всего по одному биту на кодирование цвета каждого пиксела. Использование для тех же целей одного байта, позволяет закодировать 256 различных оттенков. Два байта (16 битов) позволяют определить 65536 цветовых оттенков. Этот режим называется High Color. Если же используются три байта (24 бита), возможно одновременное отображение 16,5 млн цветов(!). Этот режим называется True Color.

Большинство цветовых оттенков образуется смешением основных цветов. Значит любой оттенок можно разделить на составляющие его основные цвета. В компьютерной графике применяется несколько таких способов разделения, которые и называются цветовыми моделями.
Мир, окружающий нас, полон всевозможных цветов и цветовых оттенков. С физической точки зрения цвет — это набор определённых длин волн, отражённых от предмета или пропущенных сквозь прозрачный предмет. Однако сейчас нас интересует вопрос не о том, что такое цвет, какова его физическая природа, а то, как вообще на практике можно получит тот или иной цвет. С развитием многих отраслей производства, в том числе, полиграфии, компьютерных технологий, появилась необходимость объективных способов описания и обработки цвета.
Цвета в природе редко являются простыми. Большинство цветов получаются смешением каких-либо других. Например, сочетание красного и синего даёт пурпурный цвет, синего и зелёного — голубой. Таким образом, путём смешения из небольшого количества простых цветов, можно получить множество (и, причём довольно большое) сложных (составных). Поэтому для описания цвета вводится понятие цветовой модели — как способа представления большого количества цветов посредством разложения его на простые составляющие.
Одной из таких моделей — является цветовой круг, о котором уже неоднократно упоминалось ранее. Он представлен на рисунке и называется большим кругом Освальда.

Наряду с кругом Освальда есть еще и круг Гете, в котором основные цвета расположены в углах равностороннего треугольника, а дополнительные — в углах перевернутого треугольника. Схема такого круга представлена на рисунке. Друг напротив друга расположены контрастные цвета.

Возникает естественный вопрос: а зачем всё это надо? Не проще ли было взять и представить в цветовой модели не основные, а все возможные цвета? Конечно, нет. Дать описание каждого цвета в отдельности очень сложно, особенно сейчас, когда на экране монитора мы имеем возможность видеть не сотни, не тысячи, а 4 миллиарда цветов (точнее, цветов и цветовых оттенков). Попробуйте описать каждый цвет в отдельности. Таким образом, цветовые модели — это почти совершенный способ для описания цветов особенно в компьютерных технологиях и полиграфии. Почему же почти? Дело в том, что не любой цвет можно представить в виде комбинации основных. Это является основной проблемой цветовых моделей. Кроме того, излучаемый и поглощаемый цвет описывается по-разному.

Перед тем как перейти к рассмотрению цветовых моделей в отдельности, рассмотрим сначала понятие цветового охвата, который даст нам представление о том, насколько та или иная цветовая модель хорошо представляет цвета.
Определённым цветовым охватом обладают электронно-лучевая трубка монитора или телевизора, цветовые модели, полиграфические краски и, конечно же, глаз человека. На рисунке схематически показано сравнение цветовых охватов человеческого глаза (a), монитора (b) и печатающей машины (c). Цветовой охват монитора соответствует модели RGB, печатающей машины — CMYK.

Итак, цвет в компьютерных технологиях, в типографии, во многих других отраслях производства, связанных с обработкой изображения, представляется в виде комбинации небольшого количества трёх составных. Такое представление называется цветовой моделью. Различные виды моделей имеют различные цветовые охваты. В этом и заключается их основные преимущества или недостатки. Отражённый и поглощаемый цвет описывается по-разному.
Существует много цветовых моделей, но все они принадлежат к одному из трех типов:
  • Психологические (по восприятию);
  • Аддитивные (основанные на сложении);
  • Субтрактивные (основанные на вычитании).
При обработке изображений при подготовке к печати имеют дело с тремя цветовыми моделями: CIE Lab – психологическое цветовое пространство, RGB – аддитивное цветовое пространство и CMYK – субтрактивное цветовое пространство.

Любое преобразование цвета из одного пространства в другое влечет за собой потерю данных о цвете в изображении.
Аддитивная модель цвета RGB
Данная модель является «естественным языком» цвета для электронных устройств ввода изображения (мониторы, сканеры, цифровые камеры), в которых воспроизведение цвета основано на излучении или пропускании света, а не на его отражении от подложки при создании изображения.

Аддитивной она называется потому, что цвета в ней генерируются суммированием световых потоков. Сумма красного, зеленого и синего цветов максимальной одинаковой интенсивности дает белый цвет.

R – red (красный), G – green (зеленый), B – blue (голубой)

Субтрактивная модель цвета CMYK
В данной модели цвета при смешивании двух или более основных красок дополнительные цвета получаются посредством поглощения одних световых волн спектра белого цвета и отражения других. Так, голубая краска поглощает красный цвет и отражает зеленый и синий, а желтая поглощает синий цвет и отражает красный и зеленый.

В аддитивной модели RGB световые потоки суммируются, производя более яркие цвета, а в субтрактивной модели CMYK световые потоки вычитаются, генерируя более темные цвета. Если учесть светонепроницаемость бумаги, которая скорее отражает свет, чем пропускает его, то становится понятно, почему такие яркие цвета в изображении на мониторе становятся темными и унылыми в отпечатанном виде.

CMYK – cyan (голубой), magenta (пурпур), yellow (желтый), black (черный).

Форматы графических данных
В компьютерной графике применяют по меньшей мере три десятка форматов файлов для хранения изображений. Но лишь часть из них стала стандартом “де-факто” и применяется в подавляющем большинстве программ. Как правило, несовместимые форматы имеют файлы растровых, векторных, трехмерных изображений, хотя существуют форматы, позволяющие хранить данные разных классов. Многие приложения ориентированы на собственные “специфические” форматы, перенос их файлов в другие программы вынуждает использовать специальные фильтры или экспортировать изображения в “стандартный” формат.
TIFF (Tagged Image File Format)
Формат предназначен для хранения растровых изображений высо­кого качества (расширение имени файла .TIF). Относится к числу широко распространенных, отличается переносимостью между платформами (IBM PC и Apple Macintosh), обеспечен поддержкой со стороны большинства графических, верстальных и дизайнерских программ. Предусматривает широкий диапазон цветового охвата – от монохромного черно-белого до 32-разрядной модели цветоделения CMYK. Начиная с версии 6.0 в формате TIFF можно хранить сведения о масках (контурах обтравки) изображений. Для уменьшения размера файла применяется встроенный алгоритм сжатия LZW.
PSD (PhotoShop Document)
Собственный формат программы Adobe Photoshop (расширение имени файла .PSD), один из наиболее мощных по возможностям хранения растровой графической информации. Позволяет запоминать параметры слоев, каналов, степени прозрачности, множества масок. Поддерживаются 48-разрядное кодирование цвета, цветоделение и различные цветовые модели. Основной недостаток выражен в том, что отсутствие эффективного алгоритма сжатия информации приводит к большому объему файлов.
PCX
Формат появился как формат хранения растровых данных программы PC PaintBrush фирмы Z-Soft и является одним из наиболее распространенных (расширение имени файла .PCX). Отсутствие возможности хранить цветоделенные изображения, недостаточность цветовых моделей и другие ограничения привели к утрате популярности формата. В настоящее время считается устаревшим.
JPEG (Joint Photographic Experts Group)
Формат предна­значен для хранения растровых изображений (расширение имени файла .JPG). Позволяет регулировать соотношение между степенью сжатия файла и качеством изображения. Применяемые методы сжатия основаны на удалении “избыточной” информации, поэтому формат рекомендуют ис­пользовать только для электронных публикаций.
GIF (Graphics Interchange Format)
Стандартизирован в 1987 году как средство хранения сжатых изображений с фиксированным (256) количеством цветов (расширение имени файла .GIF). Получил популярность в Интернете благодаря высокой степени сжатия. Последняя версия формата GIF89a позволяет выполнять чересстрочную загрузку изображений и создавать рисунки с прозрачным фоном. Ограниченные возможности по количеству цветов обусловливают его применение исключительно в электронных публикациях.
PNG (Portable Network Graphics)
Сравнительно новый (1995 год) формат хранения изображений для их публикации в Интернете (расширение имени файла .PNG). Поддерживаются три типа изображений – цветные с глубиной 8 или 24 бита и черно-белое с градацией 256 оттенков серого. Сжатие информации происходит практически без потерь, предусмотрены 254 уровня альфа-канала, чересстрочная развертка.
WMF (Windows MetaFile)
Формат хранения векторных изображений операционной системы Windows (расширение имени файла .WMF). По определению поддерживается всеми приложениями этой системы. Однако отсутствие средств для работы со стандартизированными цветовыми палитрами, принятыми в полиграфии, и другие недостатки ограничивают его применение.
EPS (Encapsulated PostScript)
Формат описания как векторных, так и растровых изображений на языке PostScript фирмы Adobe, фактическом стандарте в области допечатных процессов и полиграфии (расширение имени файла .EPS). Так как язык PostScript является универсальным, в файле могут одновременно храниться векторная и растровая графика, шрифты, контуры обтравки (маски), параметры калибровки оборудования, цветовые профили. Для отображения на экране векторного содержимого используется формат WMF, а растрового – TIFF. Но экранная копия лишь в общих чертах отображает реальное изображение, что является существенным недостатком EPS. Действительное изображение можно увидеть лишь на выходе выводного устройства, с помощью специальных программ просмотра или после преобразования файла в формат PDF в приложениях Acrobat Reader, Acrobat Exchange.
PDF (Portable Document Format)
Формат описания документов, разра­ботанный фирмой Adobe (расширение имени файла .PDF). Хотя этот формат в основном предназначен для хранения документа целиком, его впечатляющие возможности позволяют обеспечить эффективное представление изображений. Формат является аппаратно-независимым, по­этому вывод изображений допустим на любых устройствах – от экрана монитора до фотоэкспонирующего устройства. Мощный алгоритм сжатия со средствами управления итоговым разрешением изображения обеспечивает­ компактность файлов при высоком качестве иллюстраций.
Как вам урок?
Made on
Tilda